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RHEOKINETICS OF MOMENTUM TRANSFER IN MICROSTRUCTURED MEDIA

V. L. Popov UDC 535.529:541.64

A theory for momentum transfer in chemically active microstructured media is proposed. This
theory is based on the assumption of the existence of a continuous internal parameter, which
is determined by the mean statistical structure of the medium and obeys the main principles
of rheology and physical kinetics. Expressions for the stress-tensor components are obtained,
which permit estimation and analysis of the influence of physico-mechanical properties of the
medium and external factors on momentumn-transfer characteristics. As an example, spatially
uniform flows are considered (unsteady shear, oscillating, and elongation ones). The results
can be used in studying flows with- complex deformation).

The constitutive elements of multiphase media differ considerably in their sizes and physical properties.
The transfer processes in such heterogeneous media, where each individual phase occupies a certain part of
their volume (V = ZVj, where j = 1,...,n), is described in (1] in the approximation of “multivelocity (tem-
perature) mutually penetrating and interacting continua” taking into account averaging of thermomechanical
characteristics and physical properties over the variety of their values for individual locally equilibrium phases
that occupy a volume V. The transfer in these media can be caused by the nonequilibrium character of mass,
force, energy, and physicochemical interaction between the phases inside a representative volumne V of the
mixture.

At the same time, there is a great variety of finely and ultra-dispersed incompressible multicomponent
media and their flows [2] for which the transfer problem may be considered from the viewpoint of a quasi-
homogeneous approach, invoking methods of rheology and physical (structural) kinetics. In a homogeneous
medium, each component can occupy its entire volume (V = V;, where j = 1,...,n). The momentum
(substance and energy) transfer and the corresponding fluxes in such media caused by external and internal
forces can be described by deviation of the distribution function of the probability density of physicochemical
(structural) properties of the mixture components from their equilibrium state.

We assume that the contribution of reaction forces to the change in momentum depends on the rate
of change of the distribution function of the probability density of chemically active reacting components.

We consider a rather broad class of rheological media that have common structural-mechanical prop-
erties.

It is known that a medium with small particles that do not interact with each other (the volume
concentration of particles is ¢ < 0.02) in the laminar regime shows no rheological properties. In this case,
the multi-component medium is modeled with a spatial fluctuating network structure [3-6] filled with a
nonrheological medium (such as, for instance, a low-molecular solvent, an oxidant, etc.). The model of a
microstructured medium is described in [6].

The inertia-free Kun segment [7] can serve as a characteristic kinetic parameter of the structural
network. This quantity is a minimum macroscopic linear scale b; of a subchain of length 5;S < H which,
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for a given macroscopic perturbation, has a random mobility (of the ith physicomechanical component)
with a linear velocity v;. Here S is the number of segments between neighboring nodes of the net and
H is a characteristic macroscopic scale on which thermodynamic and statistical flow parameters of the
medium change appreciably. Continuity of the random quantity (component) is ensured by consideration of
a distribution function for the probability density Wi{x, v, #) for which . v;, and ¢ are independent variables.

The mean velocity of a component with the number (concentration) density n;(z,t) = / Wiz, v, t) dv; is

the quantity o,(x.t) = ni_1 v;Wi(z,v;,t) dv; averaged over the distribution of v;. The flow velocity of

the mixture is defined as 'uo(m, t). The thermal velocity of its ith component is defined as v; — vy, and the
diffusional velocity of the flow of several components is ¥; —vp. In this situation, the coordinate system moves
with the macroscopic velocity of the mixture flow.

Because of the complexity of taking into account information about the motion of component-segments
(such as intersegmental rigidity, orientation of the components, etc.). we simplify the model. In what follows,
we assumne that the phase carrier does not interact with an irregular (Sb; # const) three-dimensional free-joint
network structure in its nodes (z, where o« = 1,...,n), where Stokes hydrodynamic, elastic (entropic) and
thermal diffusion forces are concentrated. Hence, we assume that an effective node (of diameter d;) interacts
hydrodynamically with the carrier medium (gas, liquid. fuel oxidant. etc.) in the same manner as a set of
segment-components of a subchain of density n; = Sb;. The chemical-reaction rate is modeled by the rate of
variation of the number of active network nodes entering the reaction.

According to the kinematic theorem of transfer (8], the continuity equation for the distribution function
of the probabilitv density 1V; for the ith reacting component (node) has the form

2‘_"_’ + diV(”‘iﬁi) = M. (1)
ot

where 7; is the velocity of the node relative.to a moving coordinate system fitted to the center of mass and
M; = OW; /8¢ is the rate of change of the probability density of the number of nodes that entered the reaction
(or the rate of the chemical reaction of energetically active nodes).

We find the relation for 7; in Eq. (1) from the condition of inertia-free balance of forces acting on a
chosen node: T f =~ 0. The Stokes resistance force of the node with respect to the undisturbed macroscopic
velocity of the medium at the point where the node is located is

fr = =&(0i = byj;), v

where ¢ is the friction coefficient of a node of diameter ;.
In a subchain extended by a distance h, an entropic force F = 3kTh/(S bf) contracting the subchain

operates. Denoting the coordinates of the neighboring nodes by 28 (a = 1,2,...,n) and taking into account
n

that the origin of the coordinate system is chosen at the center of mass. we obtain Z x$ = (0. The effective

a=1
mass of the node is m, = const. In view of this, we obtain the elastic force (for the most probable value
o= d) N
KT <—, & 128Tr;
9 = = ¥ AR . 3
=5 ;< P~ (3)

where k is the Boltzn.. - constant.

The diffusion force caused by thermal motion of the ith node moving with velocity #; relative to the
coordinate system is [3-5 , .
Y [3-5) Ol WY "

0;1,',j )

where D is the diffusivity and T is the temperature. From the condition of inertia-free balance of forces we

fi=-DVInce= kT

have
5 = £ (Soijz; + fa+ f3). (5)
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From (1)—(5) we obtain
ow; . OW; - . . ow;
= it "d‘xj =& AW, + V(2117)] + 7 (6)
where @ = £Sb?/(12kT) is the time of transformation of the structure to its most probable configurational
state (time of dynamic relaxation). The coordinates x;; in Eq. (6) are normalized to (Sb7/12)%-5.
For the equilibrium state, all derivatives in the left part of Eq. (6) and the last term in the right part
o}

are equal to zero. With account for the normalization / Wi(z) dr =1, Eq. (6) transforms to
o0
Wo = (12/(21Sb3))* 2 exp (- 1222 /(2562)).
In this situation, the root-mean-square deviation of the node from the origin (configuration space) is (22)g =

?*Woda = Sb;g /4. Hence, the equilibrium state of the medium is characterized by an internal structural

scale (root-mean-square radius of inertia) of order (22)g = 32D. It should be noted that Wo depends on Sb2,

which has a definite physical meaning (root-mean-square radius of inertia of the interaction forces).
Multiplying Eq. (6) by x;x; and integrating it, we obtain the following equation for the first moments

of the distribution function ((a:,:r i) = / rix; Wi dV}):

d{x;z;) ) . 1 . Nz,
_a;t L2 = (@iap)ony + (@jze) o — 2027 (i) — 6;5) + Oaiz;) (‘;1‘ ) . (7)
In deriving Eq. (7), we used the condition of incompressibility (¢4, = 0) and the above-indicated
normalization of the quantity 1V; and passed from the integral over the volume to the integral over the
surface under the condition that 1V; — 0 at infinity. Here &;; is a unit matrix.
In what follows, in considering particular cases with various conditions of deformation. we assume

that the chemical-reaction rate (in the presence of a source or drain) depends on the quantity (z;z i), ie.,

O(ix;) /Ot = +h(aix;) [or Oz iy/Ot = £k({z;x;) — 0;;)]. The temperature dependence of the reaction rate
constant may obey the Arrhenius law & = koexp (—E/(RT)). Here E is the activation energy and R is the
universal gas constant. The reaction time 7 (duration of chemical relaxation or the lifetime of nodes in the
scale (z2)¢) for a first-order reaction is inversely proportional to the reaction rate: & ~ 7=!. The quantity
ko~ 1y ! is the scale of the total time of the chemical reaction.

The mowmentum transfer occurs only in a nonequilibrium state of the medium, where the distribution
function of the probability density differs from the equilibrium one. It follows from relation (7) that this
difference is caused by local or spatial nonuniformity of the quantity (x;z;) or by chemical reactions.

Writing Eq. (7) in a dimensionless form, we obtain
d(z;x;)

dt
Here t = t/t, (t. is the time required for the physicochemical changes in the configuration space (z%)o = Sb?/4
to be completed) and G is the velocity gradient.

The rheokinetics of the process is seen to be characterized by the Deborah and Weissenberg numbers
(Dey = a9/t, and Weg = Gayp. respectively) and also by physical nonlinearity of the type 8(G.T) =
2/ &(G) & (g/ 1) exp (—E/(RT)). where a2 is the maximum relaxation time for G — 0, and 374(G.T) is
the dimensionless time of physicomechanical relaxation in the presence of a drain or source of nodes in the
reaction space (accordingly, either plus or minus are taken in the expression for 3).

It follows from Eq. (8) that, under the action of external forces (G and T), the macroscopic transfer
of momentum in the media under cousideration is to be accomplished not instantaneously but in accordance

Deg = VVe()[<.'L‘L':L'k>'5kJ‘ + (.’L‘j.’lfk> E'ki] - /3(G T)K:LL.L]> - 50'}. (8)

with the times of physical and chemical relaxation.
At a low temperature of the reaction, we have &2 < 7 = 1pexp (E/(RT)) and 8 = (2&+7) /(1) = 1/ 2
therefore, chemical kinetics is the determining (slowest) mechanism of momentuin transfer. For a sufficiently
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high temperature, we have 3 = 1/7, and the diffusion mechanism can be the determining one. When the times
of physical and chemical relaxation are comparable, the transfer occurs in the transition {diffusion-kinetic)
regime.

We obtain the vector of the momentum fiux densits ¢ the nodes across an elementary surface in the
direction x; per unit time relative to vy as fois 8] If cue node interacts with the medium with a force
fi = —€(0; — ;525) and there are n; nodes in a unit volume, then we have

Py = —Pyd;j + 2uei; — 0.511,i/:1:j(f2 + f3)W; dV;, 9)

where €;; = 0.5(0v;j + 0vj;) is the symmetric part of the strain-rate tensor and p is the viscosity of the carrier
medium.

According to (3) and (4), from (9) we obtain

}Dij = —Po(sij + 2[téij + S(<:1.',j.”l'1'> — 5ij)- (10)
In deriving Eq. (10), we used the Ostrogradskii-Gauss theorem and normalization. The quantity ¢ = 0.5m;AT
is the elasticity modulus of the medium, which can be determined experimentally. The moments of the
distribution function of the probability density of the nodes are normalized to Sbl2 /12.

It follows from Eq. (10) that the well-known relation for the stress tensor in the model under study is
supplemented by an anisotropic part ({(x;z;) — d;;), which gives a measure of deviation of the stressed state
of the medium from its equilibrium value.

Using the relations obtained, we consider the influence of rheokinetic factors of momentum transfer
for several particular cases.

For the case ¢4, = G sin (wt), the system of equations for the moments of the distribution function (8)

is
i((;f;) + Bl(a?) — 1] = 2G{wyx2) sin (wt). iﬁ%;_ﬁ. + B{xywe) = G(x2) sin (wt),
d(;i? +8[(23) — 1] = 0. f&’jtﬁl + B(rixs) = Glrars)sin (wh), )
(]((-;:) + ﬂ[(l%) - 1] = (), LKJTZ:I‘Q_ + Baaxs) = 0.

Here G is the amplitude of deformation. w = 27 /t., where t, is the period of deformation (characteristic time
scale), and 3 =2/ + (1/79) exp (—=E/(RT)).

Using the method of variation of arbitrary constants, from the system of inhomogeneous equations
(11) we find the corresponding moments (z;x;). In doing so, we use the initial conditions for t = 0: (a}) =
(#3) = (x2) = 1 and (x321) = (x122) = (r273) = 0.

A successive solution of system (11) vields the following dimensionless expressions for nonzero moments:

ﬁ [7sin (wt) — wcos (wt) — Gexp (—Ft)],

(@3) = () = 1. (zwa) =

. 2G%3 11 0.53cos(2wt) + wsin (2wt)
W2y i — -
(i) =1+ 3+ w? [‘Zﬂ 3% 4 4w
w (1 Bsin(2wt) - 2wcos(2wf)> . exp (—03t) cos (wf)] A (~3) (12)
_.‘Z_J((_+ TR " exp (—3t).
G2 3w w
A=—-— ‘[ T = -)—_7]'
324+ uw? 52+t P2
For w = 0, from (12) we have
G 9 2G*
(T172) = 3 (1 —exp(-t)), (=) =1+ = (1 —exp (-pt) — Btexp (- ft)). (13)
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Expressions (13) for t+ — oo can be written as
1+2G%*/p%2 G/B3 0O
lwapl=| G/ 1 of. (14)
0 0 1
Substituting (14) into (10), we obtain the stress tensor
—Py+2eG?*/3? uG+<G/3 0
Py= nG+eG/p i) 0 . (15)
0 0 —Py

It follows from (15) that. for a shear flow specified with a constant velocity gradient G = ¢y, the

stressed state is characterized by a stress tenisor with tangent and normal components 72 = 7 and Py,
respectively, with 7,; ~ G and (P} — Pag) ~ G?. This viscoelasticity is evidenced by the tests of [9-11] and
also by various phenomenological models of both differential and integral [2] tyvpes.

For the media under consideration, the momentum fluxes and the chemical-reaction rates are

anisotropic. Figures 1 and 2 show the difference in normal (Py; — P»2) and tangential (712) components
of stress as a function of the dimensionless time and the quantity RT/E for a transitional flow (Grg = 0.1).
At first, the difference in normal stresses varies in time more slowly than tangential stresses and, afterwards,
faster. With increasing RT'/E, the difference Py — P22 decreases faster than 7y2. For short times of external
action, the momentum transfer is practically independent of RT/E.
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It is known that not all collisions of molecules whose energy is greater than the activation energy result
in chemical transformation. For a reaction to proceed, in addition to the required activation energy, the
colliding molecular structures should be properly packed and oriented and their momenta properly ordered.
For complex structures, orientation can significantly affect both the rate and direction of chemical reactions.

By means of orthogonal transformations [12] of matrix (14) we obtain

() = (@) _ Gy

2(ryxs) 2o/ E (o/m0) exp (—E/(RT))
Relation (16) gives the probability of the case in which the principal axes of the ellipse of revolution for the
moments are aligned with the flow. In-the case G — 0 and ¢ = 15°, we obtain P} — Py = 2719 = 0. For
¥ = 22.5°, we have P} — Py = 27(5. It follows from Eq. (16) that, as the value of G increases, the angle
of orientation and the activation energy of the medium decrease. This is caused by increasing frequency of
collisions between the components. Hence, the reaction rate increases with increasing shear velocity. The
dependence cot 21 = f{RT/E.t/7) for Gry = 0.1 is shown in Fig. 3. Orientation exerts a profound influence
on flow anisotropy and the rate of chemical reactions at low temperatures.

Figures 4 and 5 show experimental data and results predicted by the above described model for 7y — oo

= cot 2¢. (16)

in transient and steady deformation regimes of high-molecular media, respectively. The parameters @ and ¢
of the model were determined from the experimental data of [13-16] in accordance with the predictions of
the proposed theory for steady deformation. The solid curves in Fig. 4 show the experimental results of [13]
obtained for an 8%-polystyrene solution in tricresyl phosphate [9; = cot 2¢ (curve 1), o = 7y2/z (curve 2),
and 93 = (Py; — Px)/< (curve 3)]. Figure 4 also shows the calculated dependence ¥y = c(Pyy — Pw)/1}, =
f(3t) (curve 4). The expression (P — Pag)/ 7 is the ratio of the elastic energy accumulated during shear
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to the dissipated energy. A close consideration shows that, unlike the expressions for 712, Py — Pa2, and
cot 21, the ratio ¢(Py; — Py2)/7{, does not depend on the deformation amplitude and only weakly depends
on RT/E.

The points in Fig. 5 show the experimental data of [11] for m = —3 and n = —4 (points 1), the data
of [12] for m = —~2 and n = —2 (points 2), and the data of [13] for m = —1 and n = —3 (points 3). The
calculated dependences are shown by solid curves (m and n are scaling factors).

In the case of uniaxial elongation under the action of a constant velocity gradient, we have 090 = 033 =
—0.591, by virtue of incompressibility, and all nondiagonal components of (7) are equal to zero. For diagonal
components, we obtain the relation

dil'f 2 . P
4 Bl — 1) = 20ala?). (7)
Solving Eq. (17) in a manner similar to that used above, we obtain
(@?) = (1 — 20587 "H1 - 20,8  exp [~BH(1 - 26;,871)]}. (18)
In this case, the stress tensof has the form P; = — Py + £({z?) — 1). and its deviator part for Pj;, by virtue
of Eq. (18), is 9y

P“ ) {1 — eXp [—,[jf(]. - 2011/5)]}

- ,O‘(l e 2‘[)11//3
The dependence Py, /s = f(RT/E,t/m) for vi179 = 0.1 under conditions of tension is shown in Fig. 6.
The approach described above allows one to estimate and analyze the influence of the physicochemical
properties of the medium, external factors acting on it, and structural (orientation) changes in the medium
on momentum-transfer characteristics in the presence of a source or drain of the substance.
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