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R H E O K I N E T I C S  OF M O M E N T U M  T R A N S F E R  IN M I C R O S T R U C T U R E D  M E D I A  

V. I. P o p o v  UDC 535.529:541.64 

A theory, for momentum transfer in chemically active microstructured media is proposed. This 
theory is based on the assumption of the existence of a continuous internal parameter, which 
is determined by the mean statistical structure of the medium and obeys the main principles 
of rheology and physical kinetics. Expressions for the stress-tensor components are obtained, 
which permit estimation and analysis of the influence of physico-mechanical properties of the 
medium and external factors on momentum-trausfer characteristics. As an example, spatially 
uniform flows are considered (unsteady shear, oscillating, and elongation ones). The results 
can be used in studying flows with. complex deformation). 

The constitutive demen t s  of multiphase media differ considerably in their sizes and plwsical properties. 
The transfer processes in such heterogeneous media, where each individual phase occupies a certain part of 
their volume (Y = EVj, where j -- 1 . . . . .  n), is described in [1] in the approximation of "multivelocity (tem- 
perature) mutually penetrat ing and interacting continua" taking into account averaging of thermomechanical 
characteristics and physical properties over tim variety of their values for individual locally equilibrium phases 
that  occupy a vohnne Vj. The  transfer in these media can be caused by the nonequilibrium character of mass, 
force, energy, and physicochemical interaction between the phases inside a representative vohnne V of the 
mixture. 

At the same tium, there is a great variety of finely and ultra-dispersed incompressible multicomponent 
media and their flows [2] for which tim transfer problem may be considered from the viewpoint of a quasi- 
homogeneous apt)roach, invokiug methods of rheology and physical (structural) kinetics. In a homogeneous 
medium, each component can occut)y its entire volume (V = Vj, wlmre j = 1 . . . . .  r~). Tile momentum 
(substance and energy) transfer and the correspouding fluxes in such media caused by external and internal 
forces can be described by deviation of the distribution function of the probability density of physicochemical 
(structural) properties of the mixture conlponents from their equilibrium state. 

We assume that  the contribution of reaction forces to the change in momentum depends on the rate 
of change of tim distribution function of the probability density of chemically active reacting components. 

We consider a rather  broad clmss of rheological media that have common structural-mechanical prop- 
erties. 

It is known that  a mediu,n with small particles that do not interact with each other (the volume 
concentration of particles is ~ ~< 0.02) ill the lamimtr regime shows no rheological properties. In this case, 
the umlti-component medium is modeled with a spatial fluctuating network structure [3-6] filled with a 
nonrheological medium (such as, for instance, a low-molecular solvent, an oxidant, etc.). The model of a 
microstructured medium is described in [6]. 

The  inertia-free Kun  segment [7] can serve ~s a ('haracteristic kinetic parameter of the structural 
network. This quantity is a mininmm macroscopic linear scale bi of a subchain of length biS < H which, 
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for a given macroscoI)ic per turba t ion ,  has a randonl mobility (of the i th physicomechanical component) 
with a linear velocity vi. Here S is the number of segments between neighboring nodes of the net and 
H is a characterist ic macroscopic scale oil which thermodynanfic and statistical flow parameters of the 
medimn change appreciably. Cont inui ty  of the random quantity (component) is ensured by consideration of 

a dis t r ibut ion function for the probabil i ty density Wi(x, vi, t) fbr which x. vi, and t are indei>endent variables. 

The nman velocity of a component  with the number (concentration) density hi(x,  t) = / W i ( x ,  vi, t)dvi is 
d 

the quant i ty  '~i(:;r,t) = nT 1 / 'v i lVi(x ,  vi,t)dvi averaged over the distribution of vi. The flow velocity of 
] 

the mixture  is defined as vo(x, t). The thermal velocity of its i th component is defined as vi - v 0 ,  and the 
diffusional velocity of the flow" of several components is 'i)i -v0 .  In this situation, the coordinate system moves 
with the macroscopic velocity of  the nfixture flow. 

Because of the complexity of  taking into account information about the motion of component-segments 
(such as intersegnmntal rigidity, orientation of the components, etc.), we simpli .fy the model. In what follows, 

we assume tha t  tim phase carrier  does not interact with an irregular (Sbi ~ const) three-dimensional free-joint 
network s t ruc ture  in its nodes (x~, where a = 1 . . . . .  n), where Stokes hydrodynamic,  elastic (entropic) and 
thermal  diffusion forces are concentrated.  Hence, we assume that an effective node (of diameter di) interacts 
hydrodynamical ly  with the carrier  medium (gas, liquid, tirol oxidant, etc.) in the same manner as a set of 
segnmnt-components  of.a subchaii) of density ni ~ Sbi. The chemical-reaction rate  is modeled by the rate of 
variation of the number of active network nodes entering the reaction. 

According to the kinematic theorem of transfer [8], the continuity equation for the (listribution fimction 
of the probabi l i ty  density I ~  for the ith reacting comt)onent (node) has tim form 

0tt~ 
0---7-- + div (ll'/tyi) = 21/i. (1) 

where & is the velocity of the node relative.to a moving coordinate system fitted to the center of mass and 
kfi = Ot~ /Ot  is the rate of change of the probability density of the nmnber of nodes that  entered the reaction 
(or the ra te  of the chemical react ion of energetically active nodes). 

We find the relation for '5/ in Eq. (1) from the conditkm of inertia-free bahmce of forces acting on a 
chosen node: E f  ~ 0. The Stokes resistance force of the node with respect to the undisturbed macroscopic 
w;locity of the medium at "the point  where the node is located is 

f ,  = - 5 ( ~ i -  bijxj), (2) 

where ,~ is the  friction coefficient of a node of diameter &. 
In a subchain extended by a (tistance h, an entrol)ic force F = 3kTh/(Sb'2i) contracting the subdmin 

operates.  Denoting the coordinates  of the neighboring nodes by,:t'~ (a = 1, 2 . . . . .  n) and taking into account 
? / ,  

that  the origin of the coordinate  system is chosen at the center of m~ss. we obtain Z :rp ~ 0. The effective 
(~----1 

mass of the node is m,,~ = const. In view of this, we ol)tain the elastic force (for the most probable vahm 

" 12kTxi 
k -  3kTsb~ Z ( : ' ' 7  - : r i )  ~ Sb~ (3) 

o ~ 1  

where k is the Boltzm. ,: constant .  
' f he  diffusion for(v, caused by thernml motion of the ith node moving with velocity t?i relative to the 

coordinate  system is [3 -5] 0 In II~ 
y3~ = - D ~ V  I n  c = - k T  - -  ( 4 )  

Oxi 
where D is the  diffusivity and T is the temperature. From the condition of inertia-free balance of forces we 

ltave 

,s~ = ~-~({,~j~,, + k + fa). (5) 
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F rom (1)-(5) we obta in  

on5 = + v(zw )] + 
0---7- + 2:ji'ij ~ O--'-t-, ' (6) 

where ~e = ~Sb~/(12kT) is tile time of transformation of the structure to its most probable configurational 
state ( t ime of dynamic relmxation). The coordinates xi,j in Eq. (6) are normalized to (Sb~/12) ~ 

For tile equilibrium state, all derivatives in the left part  of Eq. (6) and the last term in the right par t  

are equal to  zero. With account  for the normalization / Wi(x) dx 
f .  

1, Eq. t r a n s f o r n l s  to 
- - O O  

W0 = (12/ (2~Sb2) ) a/2 exp (-12x2 / (2Sb~) ). 

In this s i tuat ion,  the root-mean-square deviation of the node from the origin (configuration space) is (x2}0 = 
P 

./- x2Wo dx = Sb2/4. Hence, the equilibrium state of the medium is characterized by ai1 internal structural  

scale (root-mean-square radius of inertia) of order (x2)0 = 3oeD. It should be noted that II'5 depends on Sb2i, 
which has a definite physical meaning (root-mean-square radius of inertia of the interaction forces). 

Mult iplying Eq. (6) by XiX j and integrating it, we obtain the following equation for the first monmnts 

of tile dis tr ibut ion function (<zixj> = f'~ixj}Vi dVi): 

d<xixj} 
dt --  (xi2"k>i]kJ nu <a:jXk}Dt'i -- 2 ~ - l ( ( x i 2 J J )  -- dij)  -t- O<a"ixJ) ot (r) 

In deriving gq. (7), we used the condition of incompressibility (i~kk = 0) and the aboveqndicated 
normalizat ion of the quant i ty  Wi and passed from the integral over the volume to the integral over the 
surface under  the condition that  II,~ --+ 0 at infinity. Here 5ij is a refit matrix. 

In what  follows, in considering particular c~ses with various conditions of deformation, we assume 
that  tile chemical-reactiou ra te  (in the presence of a source or drain) depends on the quantity <:fix j), i.e., 

O<Xi:l'j> /Ot = -b]~'<:ri:rj) [or O(xixji /Ot = +k( <xixj) - 5ij)]. Tilt, temperature dependence of tile reaction rate  
constant may  obey the Arrhenius law k = k0 exp ( -E/ (RT)) .  Here E is the activation energy and R is tile 
universal gins constant. The  reaction time r (duration of chemical relaxation or the lifetime of nodes in the 
scale (x2)0) tbr a first-orde~ reaction is inversely proportional to the reaction rate: ~: ~ r - l .  The  quanti ty 
k0 "-" ro -1 is the scale of the total  tinm of the chemical reaction. 

Ti le  monmntum transfer occurs only in a nonequilibrium state of the medium, where the distribution 
function of  the probability density differs from the equilibrium one. It follows from relation (7) that  this 
difference is caused by local or spatial nonuniformity of the quantity (xixj) or by chemical reactions. 

Wri t ing  Eq. (7) in a dimensionless form, we obtain 

De0 d(xixj) = Weo[<xixk)Okj + (:rjxk)Vki] --/3(G, T)[(xixj} - 5ijl. (8) 
d~ 

Here t? = t / t ,  (t, is the tinm required for the physicochenfical changes in the configuration space (x2)0 = Sb~/4 
to be completed)  and G is the velocity gradient. 

T h e  rheokinetics of the process is seen to be characterized by the Deborah and V~%issenberg numbers 
(De0 = aeo/t, and }Veo = G&-~r), respectively) and also by physical nonlinearity of tile type /3(G. T) = 
2~e0/ee(G) 4- (~e,o/ro)exp ( - E / ( R T ) ) .  where ze0 is the nmximum relaxation time fbr G --+ 0, and /3 - t (G .  T) is 
the dimensionless time of physicomechanical relaxation in the presence of a drain or source of nodes ill the 
reaction space (accordingly, either plus or minus are taken in the expression for/3). 

I t  follows from Eq. (8) that ,  under the action of external forces (G and T),  the macroscopic transfer 
of m o m e n t u m  in tile media under  consideration is to be accomplished not instantaneously but in accordance 
with the t imes of physical and ehenfical relaxation. 

At  a low temperature  of the reaction, we have ~e << r = r0 exp (E/(RT))  and/3 = (2ae+r)/(rae) ~ 1/ae; 
therefore, chemical kinetics is the determining (slowest) mechanism of momentum transfer. For a sufficiently 
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high t e m p e r a t u r e ,  we llave f3 ~ l / r ,  and tile diffusion mecilanism can be tile de te rmin ing  one. When  tile t imes 
of pilysical  a n d  chemical  relmxation are comparable ,  tim tnmsfer  occurs in ti le t ransi t ion (diffusion-kinetic) 

regime. 
~,Ve o b t a i n  tile vec tor  of  tile inomentum flux dens i t :  . .'" qm nodes across an e lementary  surface in tim 

di rec t ion  x j  per  unit t ime re la t ive  to vo ~s foii i8]. If ~.m, uode interacts  wi th  tile mediunl wittl a force 
f i  = -~( '3 i  - '[3ijxj) an(i the re  are  ni nodes in a unit  volume, titan we imve 

Pij -=- -PoSij  + 2#i~ij - 0.Sni f x j ( f2  + f:3)Wi dVi, (9) 

wimre eij = 0.5(Ovij + Ovji) is the  symmetr ic  par t  of tile s t rain-rate  tensor and # is tim viscosity of tile carr ier  

medium.  
A c c o r d i n g  to (3) and  (4), f rom (9) we obta in  

P/j = -P0g/ j  + 2pii j  + e(@ix/} - 5ij). (10) 

In der iv ing  Eq.  (10), we used the  Ost rogradski i -Gauss  t imorem and normal izat ion.  Tile quant i ty  r = 0 .5n ikT  
is tile e l as t i c i ty  modulus  of  the  medium, wtficll call be determined experimental ly .  The  nmments  of tile 
d i s t r ibu t ion  funct ion  of the  probabi l i ty  density of tim nodes are normalized to  Sb2i/12. 

I t  follows from Eq. (10) t h a t  tim well-known relation for tim stress tensor  in the model under  s tudy  is 
su t )p lemented  by  an anisot ropic  pa r t  r - 5ij), which gives a measure of  deviat ion of the stressed s ta te  
of tim m e d i u m  fr(ml its equil i l )r ium value. 

Us ing  the  relat ions ob ta ined ,  we consider tile influence of rlmokilmtie factors of momen tum transfer  

for several  l )ar t icular  cases. 
For  t h e  case i'2l = G sin (,,'*), tim systenl of  equat ions for tim tnoments  of  tim distr ibution f lmction (8) 

is 
d(:q> d(: , ; , , ,>  ., . 

dt +/3[(x't2) - 1] = 2G(xtx2)  sin (cat), d----7-- + 3(x tx2)  = G(x~) sm (cat), 

d(:c~} + ~[(a'3) - 1] = 0, d(xtx:~___~} + Li(xix3) = G(x2x3)s in  (,2t), (11) 
dt " dt 

d(a'~> +/3[(x~} - 1] = O, d(x2x3) +/3(x2:r3> = 0. 
dt dt 

Here G is t h e  ampl i tude  of deformat ion ,  w = 27r/t . ,  wimre t .  is tile period of  deformat ion  (characterist ic t ime 

scale), a n d / 3  = 2/~e + ( l / r 0 )  exp  ( - E / ( R T ) ) .  
Using tile met i tod  of  w~riation of a rb i t ra ry  constants,  from tile sys tem of  inilomogeneous equat ions 

(11) we f ind the  cor responding  moment s  (xixj).  In doing so, we use tlle init ial  condit ions for t = 0: (x~} = 

= = 1 a n d  = (x x2> = = 0. 
A successive solut ion of  sys t em (11) yields tim following dimensionless expressions for norLzero monmnts:  

G 
(x]) = (:r:~) = 1, (x t a"2) - /32 + ca2 [fl sin (cat) - ca cos (cat) - / 3  exp (-Lqt)], 

23 : + 

1 0.5/3 cos (2~,,t) + w sin (2wt) 
2G2'3 ~/3 /32 + 4ca 2 = 1 + / 3 2  + 

fl sin (2cat)t4 ~ -+ 2~'4ca ~c~ (2cat)) + exp (-,'#)0., cos (~.,t) ] + A exp ( - 3 t ) .  

G '  [ 3ca/3 ca] 
A -  ~32+ca2 1 Li2+4ca 2 /32 " 

For a.. = 0, f rom (12) we have 

G (1 - exp (-Lit)) ,  = 
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2G 2 
(x 2) = 1 + -tiff- (1 - exp ( -Li t )  - / d r  exp (- /3t)) .  

(12)  

(13)  
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Expressions (13) for t --* cx~ can be wri t ten as 

1 + 2G~ '2 G//3 

[I (xixj) II = a//3 1 

0 0 

Substi tut ing (14) into (10), we obtain the stress tensor 

-Po + 2~G2//32 #a + eG/~ 

P~ = #a  + ea /~  -Po 

0 0 

0 

0 

-Po 

(14) 

(15) 

It follows from (15) that ,  for a shear flow specified with a constant  velocity gradient G = hi2, the 
stressed s ta te  is characterized by a stress teflsor with tangent and normal components rt2 = ~2t and P/i, 
respectively, with vii ~ G and (Pll - P~2) N G 2. This  viscoel~sticity is evidenced by the tests of [9-11] and 
also by various phenomenological models of bo th  differential and integTal [2] types. 

For the media ml(ler consideration, the momentum fllLXeS and the chemical-reaction rates are 
anisotropic. Figures 1 and 2 show the difference in normal ( P u  - P22) and tangential (rr_,) COml)onents 
of stress as a flmction of the dimensionless t ime and the quantity RT/E  for a transitional flow (Gvo = 0.1). 
At first, the difference in normal stresses varies in t ime more slowly than  tangential stresses and, afterwards, 
faster. With  increasing RT/E, ttm difference P u  - P'22 decreases faster than rt2. For short times of external 
action, the momentum transfer is practically independent  of RT/E. 
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I t  is known that  not all collisions of molecules whose energy is greater  than  tile actiw~tion energy result 
in chemical transformation.  For a reaction to proceed,  in addition to tile required activation energy, the 

colliding molecular structures should be  proper ly  packed and oriented and their  monlenta properly ordered. 

For complex structures,  orientation can significantly affect both  the ra te  and direction of chemical reactions. 

By means of orthogonal t ransformations [12] of mat r ix  (14) we obta in  

- 

- -  + e x p  ( - Z / ( n T ) )  = c o t  (16 )  

Relation (16) gives the probability of tile case in which the principal taxes of the ellipse of revolution for the 

moinents are aligned with the flow. In- the case G ~ 0 and "(~ = 45 ~ we obta in  Plx - P22 = 2r12 = 0. For 

0 = 22.5 ~ we have Pit  - P.,2 = 2rt2. It  follows f rom Eq. (16) that ,  as the value of G increases, the angle 
of orientation and the activation energy of the m e d i u m  decrease. This is caused by increasing frequency of 

collisions between the comi)onents. Hence, the react ion rate increases with incre~ksing shear velocity. The 

dei)endence cot 2g; = f ( t?T/E,  t/To) fi)r Gro = 0.1 is shown in Fig. 3. Or ien ta t ion  exerts a i)rofound influence 
on flow anisotropy and the rate of chemical react ions at  low temperatures .  

Figures 4 and 5 show exI)eriinental da ta  and results  predicted by the above described model for r~) --+, cc 

in traasient  and steady defi)rination regimes of high-molecular  media, respectively. The parameters  ;~, and 

of the model were deternfined from the exper imenta l  d a t a  of [13--16] in accordance with the predictions of 

the proposed theory for steady deformation. The  solid curves in Fig. 4 show the experimental  results of [131 

obtained for an 8%-polystyrene solution in tricresyl phosphate  [0t = cot 2'(3 (curve 1), '02 = r12/a (curve 2), 
and 03 = (Pl l  - P'2'.))/e (curve 3)]. Figure 4 also shows the calculated dependence '0~ = e(Pl l  -- P'_,'_,)/r22 = 

f(flt) (curve 4). The  expression z(PIL - P22)/@2 is the ratio of the elastic energy accumulated during shear 
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to the dissipated energy. A close colmideration shows that ,  unlike the expressions for v12, Pt l  - P22, and 
cot 2~b, the ratio z(PH - P'22)/~'r2 does not depend on the defornmtion amplitude and only weakly depends 
on R T / E .  

The points in Fig. 5 show the experimental da ta  of [11] for m --- - 3  and n -- - 4  (points 1), the da ta  
of [12] for m -- - 2  and n =- - 2  (points 2), and the da ta  of [13] for m. = -1  and n -- - 3  (points 3). The 
calculated dependences are shown by solid curves (m and 'n are scaling factors). 

In the case of uniaxial elongation under the action of a constant velocity gradient, we have "t)22 - :  ?)33 = 

-0.5'bH by virtue of incompressibility, and all nondiagonal components of (7) are equal to zero. For diagonal 

components, we obtain the relation dx 2 
d'-'t'- -V/3[<x2> - 1] = 2"bii<x2>. (17) 

Solving Eq. (17) in a manner similar to that used above, we obtain 

(x 2) = (1 - 2/'~iZ-l)-t {1 - 2/~i/3 -1 exp [-/3t(1 - 2bii/3-1)]}. (18) 

In this case, the stress tenso~has the form P~i = - P 0  + z((x2> - 1), and its deviator part  for Pi l ,  by virtue 
of Eq. (18), is 

2~'bt t 
Pl,  = /}(1 - 2btt//3) {1 - exp l-fit(1 - 2b~,/d)]}. 

The dependence Pt i /x  = f ( R T / E ,  t/vo) for v1170 = 0.1 under conditions of tension is shown in Fig. 6. 
Tile approach described above allows one to estimate and analyze tim influence of the physicochemical 

properties of the medium, external factors acting on it, and structural (orientation) changes in the medium 
on momentum-transfer characteristics in the presence of a source or drain of the substance. 
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